Extrapolation and Generation of
Benchmarks from Communication Traces

Frank Mueller, Xiaosong Ma
North Carolina State University

&S U.S. DEPARTMENT OF

TranEE e @) ENERGY
Department of Computer Science - N 4

Agenda

e Overview of ScalaIOTrace

e Probabilistic Tracing and Replay (ICPP11)

e Communication Extrapolation of Traces (PPoPP'11)

e Generation of Executable Specifications from Traces (ICS'11)
e Automatic Benchmark Code Generation from Traces

Introduction

e Contemporary HPC Systems
— Size > 1000 processors
— take IBM Blue Gene: ~74k nodes, ~300k cores

e Challenges on HPC Systems (large-scale scientific applications)
— Communication & I/0 scaling (MPI)
— Communication & I/0 analysis

e Procurements require performance prediction

Communication Analysis

Existing approaches and short comings

e Source code analysis
+ Does not require machine time
- abstr. level: apps complex, no dyn. info

e Lightweight statistical analysis (mpiP)
+ Low instrumentation cost
- only aggregate information
e Slicing
+ Fast
- lacks temp. info

e Performance Modeling
+ Abstract, somewhat general
- only high-level stats, arch.-dependent

e Fully captured (lossless): Vampir, VNG
+ Full trace available for offline analysis
- not scalable (n traces) / need viz cluster

e L -2 I e
e 1111110 R
o] | IR | 1B
]| 0 e
S BRI ‘
s | | 3 it L1
] || 113 | e b
e =
e 0 3w
E

viz 1/0

trace.ollpan.sym.0.: G
it

e

ScalaTrace: Lossless & Scalable Tracing

e Traces communication + I/0 of MPI codes via interpositioning

e Trace size: Near constant size, one file represents all nodes

— Intra-node (loop) & inter-node (task ID) compression of
SPMD codes - preserves program structure

— Location-independent encoding > scales
-E.g., <10, MPI_Irecv(LEFT), MPI_lsend(RIGHT)>
— Communication group encoding
—<dim start_rank iteration_length stride {iteration_length stride}>

e Preserves timing for computation & communication (histograms)

® O ® @ ® .. _ Trace Size Replay Tlmes

__________ | Bnode—only Oglobal

OTeral OMEL W Compu

L T
B2 4 B8 4 8 8
o © © © © 9o o o

——————————

IMum ber of CFUs

ScalalOTrace: Multi-level 1/0 Capture (ICPP’11)

e Collect IO-traces at

o MPI-IO layer' Application
- PMPTI / Umpire (library) HDE
— POSIXI/O R
- gcc interposition (recompile) OSIX 10
e Replay I/0
Kernel

— Ability to replay MPI-IO calls
e Automated Trace Analysis
— Customized replay

— Adds generic event handlers for trace
analysis

— Future: Off-line analysis w/o replay
(on your laptop)

/O Trace Collection

e Use ScalaTrace for lossless I/0 tracing

e Collect MPI-IO (higher level) and POSIX I/O (lower level) traces
— Expose multiple layers
— Enable analysis of multi-level traces in a scalable way

e Scalable I/0 Tracing:
— File name compression
— collective I/0O - file offsets, patterns <start, stride, #elem>
— file handles, custom data types = opaque pointers (buffered)

e MPI I/O: PMPI wrappers, POSIX I/O: Gnu -wrap

ScalalOTrace and Replay: Trace Sizes

FlashlO: Perfect compression (HDF5) POP: 2 orders magn. less (NetCDF)

1.00E+08 1O o Pt
M Flat M Intra-node
O Inter-node 1.00E+10 — [Inter-node
1.00E+07 -
1.00E+09

1.00E+06 1.00E+08 -
1.00E+07
1.00E+05
1.00E+06
2
@ 1 00E+04 2
L 2 1.00E+05
a c
C
‘o 1.00E+03 & 1.00E+04
g o
7] Q@
© = 1.00E+03
= 1.00E+02 ®
3 ® 1.00E+02
e i, +
E =
1.00E+01 1.00E+01
1.00E+00 ; -
1.00E+00 " 2 4 8 16 32 64 128 256 5121024

2 4 8 16 32 64 128 256 5121024

Number of nodes ORNL Jaguar
e Next slide: user-tunable precision knob
— trade-off compression vs. accuracy
— addresses data-dependent convergence points (POP, ...)

Number of nodes

Histogram Based Trace Collection

e Problem: Parameter mismatch - no compression > not scalable
e Solution: Histograms of multiple bins > lossy but scalable

e target precision level [%] - user specified

e If events match > collect lossless traces

e Else if difference of values < precision level 2> histogram
— Bin value ranges dynamically adjusted

Deterministic Trace Replax

e Replay = "what-if" analysis, check correctness, ...

e Lossless Trace Replay
— Each node: reads its own events, reissue MPI&I/O calls
— No trace decompression, dummy data (msgs, file data), A time

e Challenges in histogram-based trace replay

— Uncoordinated selection of statistical comm. end-
points/trace volume can lead to deadlock

— Needs distributed, orchestrated replay
— All nodes: read entire trace events, agree on values
— E.g. Send Op: Sender calls Send(), receiver calls Irecv()

10

POP - Histogram-based trace size

e Histogram based traces:
— Only sub-linear increase in trace size
— 2 orders of magnitude smaller than lossless trace

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

Trace File Size in bytes

1.E+02

1.E+01

1.E+00

¥ Lossless Trace

" Histogram Trace

32 64 128 256 512 1024 2048 4096

Number of nodes

11

POP - Histogram-based Trace Replay

e Replay time within 5% of original time till 512 nodes (except 128)
e Replay time within 12% for 1024/2048

350.0
300.0 B Original Time

250.0 B Replay Time

N
o}
©
o

Execution time in sec
5 o
S O
o (@]

50.0

32 64 256 1024 2048
Number of nodes

0.0

12

Scalable Comm. & I/O Tracing (Summary)

e Aggressive trace compression
— Near constant size trace file for Flash I/0, CG
— Only sub-linear increase for POP

e Capability to record traces at several layers
e Replay of histogram traces within 10% -15% of orig. time
e Framework for post-mortem trace analysis

NC STATE UNIVERSITY _ LABORATORY

Department of Computer Science

13

Communication Extrapolation (PPoPP’11)

e Motivation
— Communication analysis at scale - without running app!
— Modeling for procurements
— Extrapolation on a single workstationl!

e Idea: synthetically generate communication traces:

— k small traces from app = large traces
— E.g., P=8,16,32,64 nodes trace > P=4096 trace (or any P)

e Replay large trace/analyze it

e Chadllenges:
— Topology detection
-Meshes/stencils
— Message payloads
-Gaussian elimination
— Time extrapolation
-Curve fitting

Accuracy of Timing Extrapolation (i)

e for NPB: BT, EP, FT, IS, CG

e up to 16k nodes (not cores)

e t(extrapolated replay) = t(app)

e Accuracy = |Replay Time - App Time|/App Time) > generally>90%

33333

App Tine /= App T_!_ne | m— |
Replay Tine S Replay Tine EEEEE

}
)

{
{

Hunber of Hodes Nunber of Nodes

BT (class E) FT (class D)

15

Extrapolation (Summary)

Contributions:

e Algorithms & techniques for comm. extrapolation, handles
— trace events
— execution times

Extrapolation

| not so elusive
e Extrapolation shown to be anymore

— correct
— accurate

e Based on app runs at smaller scale

e Obtains comm. behavior of parallel app at arbitrary scale
— without actual execution at this scale > unprecedented

e Future Work:
— Weak scaling

16

Communication Benchmark Generation (ICS’11)

e Goal: Generate comm. benchmarks from apps that are
— easy to 1) distribute, 2) use, 3) modify

e Extracted benchmarks from applications are
— Performance-accurate
— Application logic is stripped out
— Readable, portable, modifiable
- Collectives are consolidated
- Nondeterminism has been eliminated

e Target coNCePTual: language for rapid generation of network
benchmarks

e Compiler + runtime librar

for(i= 0; i< 10; i++){ For 10 repetitions {
MPI_Irecv(10, LEFT); All tasks t asynchronously send a
MPI_TIsend(10, RIGHT); 10-byte message to task t+1 then
MPI_Waitall(); all tasks await completion

} }

17

Code Generation from Application Trace

Application > Application Trace > Benchmark in coNCePTualL

MPI_Tnit(); RSDI:
funcl();
for(i = 0; i< 10; i++){ PRSDI:
func2();
MPI_Irecv(LEFT); RsSD2:
func3();
MPI_Isend(RIGHT); RSD3:
func4();
MPI_Waitall(); RSD4:
}
funch(); RSD5:
MPI_Barrier(); RSD6:

MPI_Finalize();

<All, Init> All tasks compute for T1 seconds

T1 For 10 repetitions{

<10, RSD2, RSD3, RSD4> All tasks compute for T2 seconds

T2 All tasks t asynchronously receive an x-byte
<All, Irecv, LEFT> message from task t-1 then

T3 All tasks compute for T3 seconds

<All, Isend, RIGHT> All tasks t asynchronously send an x-byte
T4 message to unsuspecting task t+1 then
<All, Waitall> All tasks compute for T4 seconds

T5 All tasks await completion

<All, Barrier> }

<All, Finalize> All tasks compute for TS seconds

All tasks synchronize

o All comm. events & computation times generated

e Benchmark contains loop structure
- easier to read/modify than translation to straight-line code

e Contributions: consolidate collectives, eliminate non-determinism

Accuracy of Generated Timings

e Time the application and the generated benchmark, and compare
the results

e Mean absolute percentage error is only 2.9% > formula:
| TcoNCePTual - Tapp|/Tapp x 100

mAppTime MWcoNCePTual Time mAppTime MWcoNCePTual Time
.20 _ 2500
LB LB
v 15 |- o 2000 -
-§ E 1500 -
o 10 a0
£ £ 1000 -
o 5 1 E
S II S 500
O 1 I I I I -'-_\ O B I —— I
16 32 64 128 256 4 16 64 256
Number of Nodes Number of Nodes

IS LU

19

Accuracy of Generated Timings

e Time the application and the generated benchmark, and compare
the results

e Mean absolute percentage error is only 2.9% > formula:
| TcoNCePTual - Tapp|/Tapp x 100

B App Time McoNCePTual Time

= = MNMNOW
QO v O v O v O

Running Time (s)

16 32 64 128 256

Number of Nodes

Sweep3D: Weak Scaling

20

Applications of the Benchmark Generator

e Determine limits of computation/comm. overlap or effect of
computational acceleration (e.g., GPUs)

— Experiment: ARC cluster, 64 cores, Ethernet, BT b'mark
— Shorten the spin times gradually
~-100%: original compute overhead (simulated w/ spin)
-0%: no compute overhead - infinitely fast processor

* Best speedup: ~3X _. 500
- overall runtime reduced @ 450
by 22% £ a0 N
Yy eclo w
. . £ 350
* 0%: network contention or 30
extra memory copies T 0 10 20 30 40 50 60 70 80 90100
O
. Pla’rform-specific I"CSLIH' a Computation Time (% of Original)

21

Execution Time (s)

(3) C Benchmark Generation

e time from Init > Finalize for app and benchmark
| Tgen - Tapp|/Tapp x 100

e Timing accuracy = ~ 6.7% (avg. error)
e ARC cluster (1,7k cores, 16 cores/node Opteron, 32 GB RAM)

:
LU MG
1024

128

512 -
236 - — o4
léi | B B Native App 32 - ~ mNative App
32 - — Benchmark | 16 - B Benchmark
16 - — . ' —

8 - — .

. B 7 1 |

2 - - ' —

. | | | | . | | |

C-16 C-64 D-236 D-312

Execution Time (s)

[R S C O & =

C-le C-64 D256 D-312

Number of Nodes Number of Nodes

22

Execution Time (s)

Cross Platform Results: ARC vs. Jaguar

e Jaguar ~23% faster execution on compute kernels

e Resemblance to benchmark obtained on ARC

— IS: strong scaling reduced per node work
- close match @ 256 tasks

— Nearly perfect match after 23% speed correction

IS Benchmark from ARC on Jaguar 128

B Appon ARC

1
e
(s)

7 \ —_— AR ; B ARC Benchmark on
6 £ ARC
Benchmark o M-
5 N Jaguar =
1 \ \ © B m ARC Benchmark on
\\ Jaguar App = jaguar
3 :
2 \§ - m ARC Benchmark on
1 Jaguarwith23%
reductionin sleep
U ' W Appon Jaguar
16 o 256 512
Number of Nodes C-16 C-64 [-256 D-512

Numberof Nodes

Summary

e Scalable Comm & I/0 tracing is realistic
e Trace extrapolation feasible - exascale modeling

e An automatic communication benchmark generation framework
— ScalaTrace = coNCePTual or C

e Generate benchmarks from real-world apps: comm. & I/0
— Ensure performance fidelity, abstract away application logic
— Readable, portable, modifiable, reproducible
-Consolidation of collectives
-Elimination of nondeterminism
— Obfuscates code - for restricted source code access
— Facilitate "what-if" analysis

24

Acknowledgements NC STATE UNIVERSITY

Department of Computer Science

e Xing Wu (NCSU, intern @ LANL) A

o Scott Pakin (LANL) > Los Alamos
e Karthik Virjayakumar (NCSU, intern @ ORNL) OAK

o Phil Roth (ORNL) NRIBF%

e Mike Noeth, Prasun Ratn (NCSU, interns @ LLNL) _ —~—— _—
o Martin Schulz, Bronis R. de Supinski (LLNL) =it

e best paper [IPDPS'07,JPDC], timed replay [ICS'08], I/0 [PDSW'09],
extrap [PPoPP'11], gen. specs [ICS'11], prob. Replay [ICPP11]

e Code availabile under BSD license:

moss.csc.ncsu.edu/~mueller/ScalaTrace

e Funded in part by NSF 0937908, 0429653, 0410203, CAREER 0237570, 0958311
e Part of work ... auspices ... U.S. DoE by UC-LLNL under contract No. W-7405-Eng-
48 + UT-Batelle, LLC DE-AC05-000R22725 + Sandia DE-AC52-06NA25396.

25

